South Carolina Electric & Gas Saluda Project

Reservoir Operations Modeling Using: Army Corps of Engineers HEC-ResSim

Afternoon Schedule

- Model Development & Calibration (1^{st hour})
- Break (20 minutes)
- Future Developments & Potential Results (2nd hour)
- Questions (30 minutes)

Mission Statement

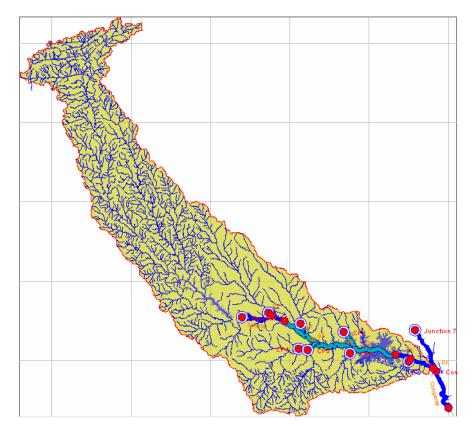
"...establish a baseline of current hydrologic, hydraulic and operational conditions, and aid in analyzing and understanding the potential upstream and downstream effects of potential changes to project operation...."

Model Objectives

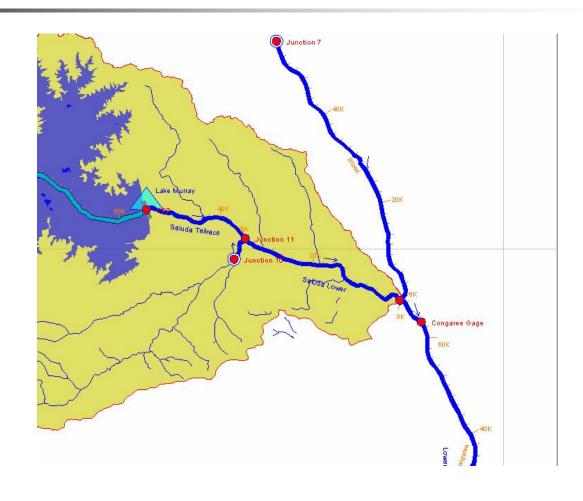
- Assess impact of various environmental constraints on project operation
- Assess various project operation schemes for feasibility
- Determine "realistic" plan for future operations

Selected Model – HEC-ResSim

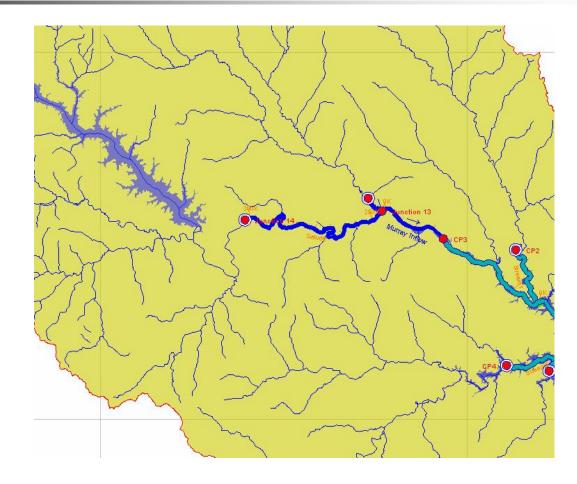
- Publicly available Army Corp of Engineers software (HEC-5)
- Specifically created for reservoir modeling and management
- Flexibility in managing large datasets
- Rule based decisions on daily timesteps
- Application of seasonal rules
- Ability to prioritize rules


Model Development

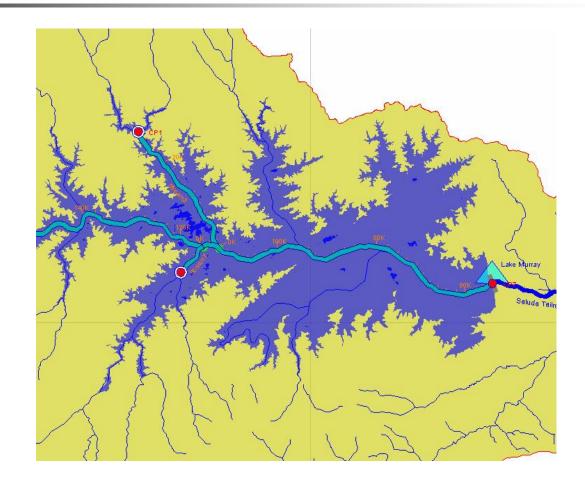
- Model Area
 - Includes Virtual Inflow from entire watershed
 - Inputs located directly upstream and downstream of Lake Murray
- Input data
 - Reservoir stage/storage data
 - Historic dam releases (Outflow Hydrograph)
 - Historic water levels (Stage data)


Model Development (cont)

- Components
 - Upstream Inflows
 - Lake Murray
 - Downstream
 Gages
 - Broad & Congaree
 River Gages



Data Layout - Downstream



Data Layout - Upstream

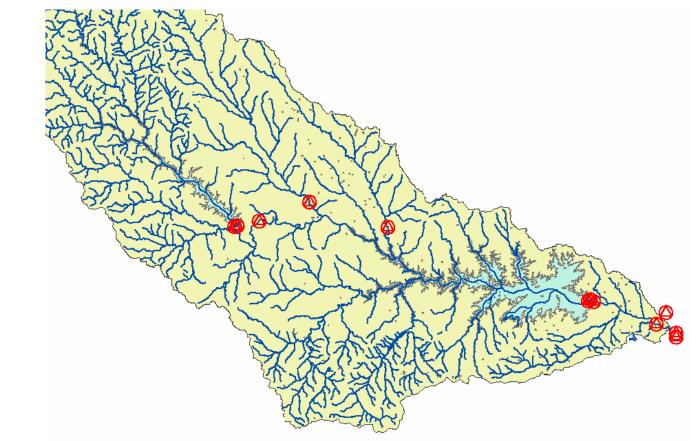
Data Layout – Lake Murray

Available Data Sources

- Operations Data
 - Generation MWh (SCE&G)
 - Lake Level (USGS)
 - Downstream Flows (USGS)
- NWS Precipitation data
- USGS Flow Data
 - Flow Model Hydrology output

Available Data Sources (cont.)

USGS gages

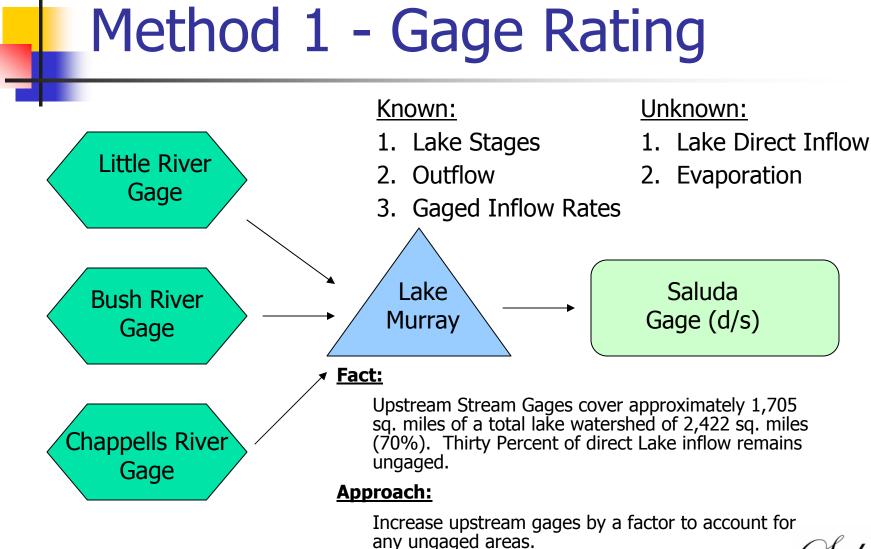

- Saluda River at Chappells
 - 1360 sq. miles,1926-Present
- Bush River near Prosperity
 - 115 sq. miles, 1990-Present
- Little River near Silverstreet
 - 230 sq. miles, 1990-Present

- Saluda River downstream of Lake Murray
 - 2420 sq. miles, 1988-present
- Saluda River at Columbia
 - 2520 sq. miles, 1925-Present

USGS Gage Locations

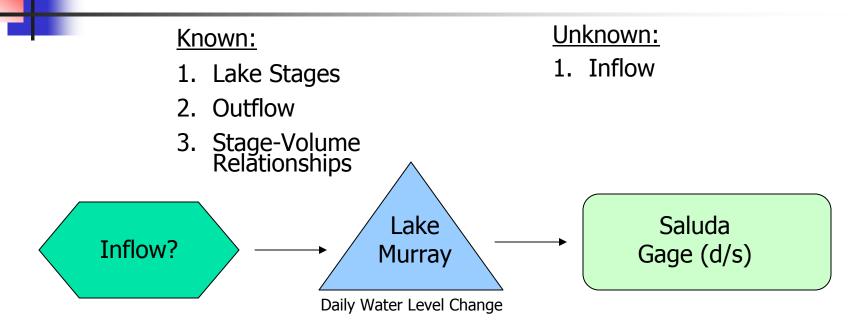
Model Process

- Develop model of watershed system
- Calibrate to historical conditions
 - Historical model used to derive system inflows
- Using derived inflows, run simulations using proposed constraints to assess impacts on the Project



Model Process

Two Methods Tested for Developing Inflow Data:


- 1) Upstream Gage Rating
 - Utilize available USGS gage data and adjust for ungaged areas
- 2) Mass Balance
 - Hindcast from outflow and lake level data historical lake level data

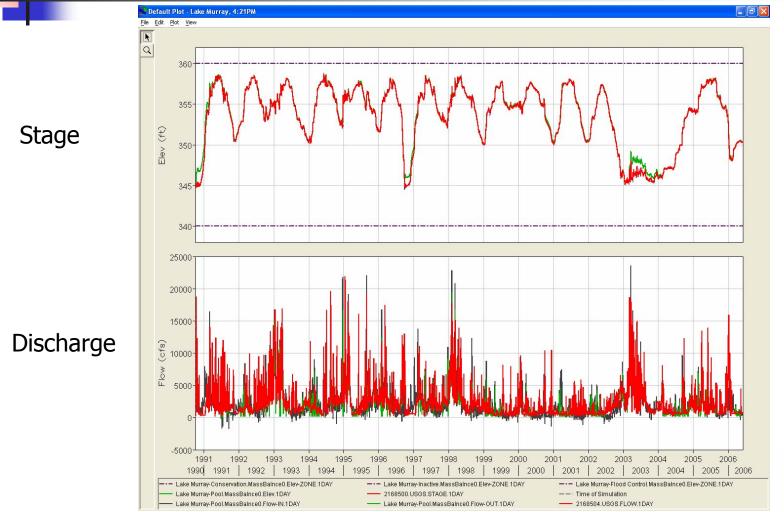
Method 2 - Mass Balance

Fact:

Inflow = Change in Storage (Water Level) + Outflow

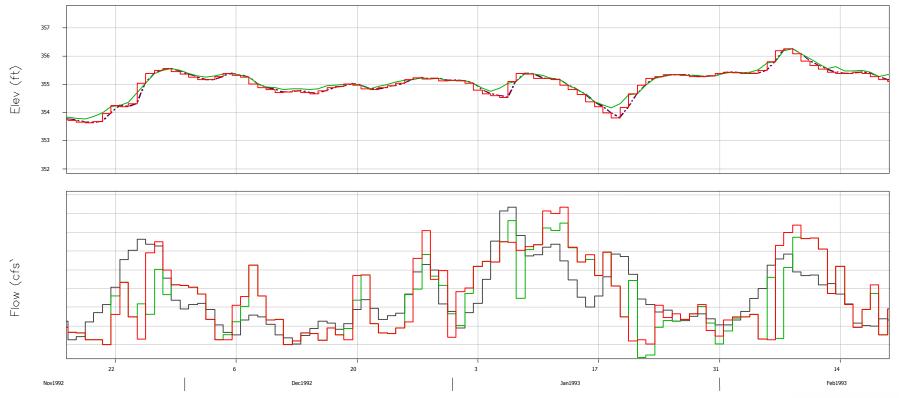
Approach:

Back calculate inflow using smoothed lake level data and gaged outflows



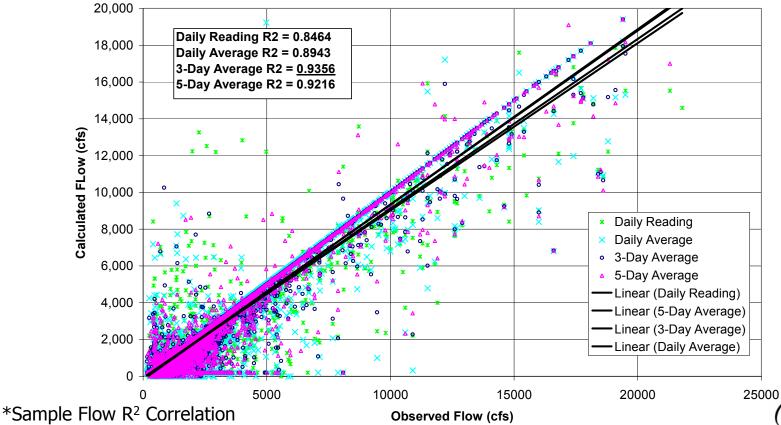
Calibration Procedure

- 1. Develop inflow hydrograph
- 2. Have model follow stage hydrograph by automatically adjusting discharge
 - Depends on how much flow is entering to decide how much to release
 - Must follow historically observed water levels (stage)
- 3. Compare calculated stage to observed stage
- 4. Compare correlation between calculated outflows and observed outflows (USGS gage)
- 5. Inflow that produces a 'good' fit would be considered calibrated
 - Both Methods were tested with this procedure


Calibration Results

Calibration Results (cont)


Default Plot - Lake Murray, 5:16PM



RELICENSING

Calibration Results (cont)

Comparison of Calculated to Recorded Saluda Dam Discharge Rates

Calibration Discussion

Lake level measurements

- 0.1 feet of variation ~ 2200 cfs on a daily basis. SCE&G notes 0.06 feet is typical "noise" in lake level readings
- Can result in excessive negative inflows (common problem with hindcast modeling)
- Lake level data needed to be "smoothed" for mass balance method

Calibration Discussion

- Accuracy of gages downstream of Lake Murray are suspect due to variations in volume
- Gages upstream have limited common period of record (1990-present)
- Low stage periods have poor correlation (result of drawdowns, accuracy of stage storage data)

Calibration Conclusion

- Mass balance method produced best correlation between both lake levels and outflows.
- Mass balance method produced a highly correlated inflow hydrograph which is now ready for constraint analysis

- 20 minutes
- Calibration Questions?

Future Developments & Potential Results

- With a calibrated model... (i.e. we know inflow)
 - Evaluate Environmental Constraints
 - Temporal Stage Impacts
 - Temporal Discharge Impacts
 - Determine frequencies that constraints may be violated
- Further Evaluations
 - Downstream flow routing (confluence with Broad R.)
 - Flood Frequency Evaluation

Sample Constraints

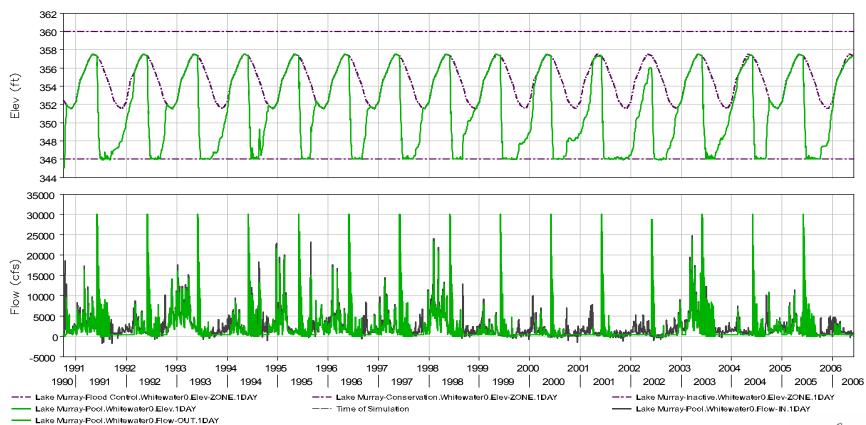
- Flow
 - Minimum flow between June 1st and August 1st and should be a minimum of 20,000 cfs for extreme whitewater course
- Stage
 - Maintain Lake Murray at elevation 380.0' year-round

Constraint Requests

- Provide
 - Specific Elevations
 - Specific Flows

Extreme Example Application

- Extreme Flow Releases during Summer Months
- Information Provided
 - Operate during June, July & August
 - Minimum flow of 30,000 cfs
 - Not required on Mondays or Tuesdays


Constraint Setup Example

RES Reservoir Editor				X	
Reservoir Edit Operations Zi	one Rule				
Reservoir Lake Murray	Description		🔣 📢 1 of 1 🕨	м	
Physical Operations Obse	erved Data				
Operation Set Extreme Whi	itewater 🗾 Descripti	on Sample Extreme Whitew	ater Releases	🔛 Day of Week Multiplier	\mathbf{X}
Max Discharge - Wi Conservation Seasonal Release Min Flow - Whitewa		tion: Lake Murray-Controlled		Day	Multiplier
	Rule Name: Seasonal F	Releases Description:		Sun	1.00
	Function of: Date		Define	Mon	0.00
				Tues	0.00
a machive	Limit Type: Minimum	✓ Interp.: Step ✓	35000	Wed	1.00
	Date	Release (cfs)	3000-	Thurs	1.00
	OlJan	0.0	25000-	Fri	1.00
	01May	0.0	Ê 2000-	Sat	1.00
	01Jun	30000.0	₹ 15000 - €		
	01Aug 01Sep	30000.0	ž 10000-	1	
	01355	0.0	3000		OK Cancel
			Jan Mar May Jul Sep Nov		
			Hour of Day Multiplier Edit		
			i FErrari ana Sana alian i kana a		
			Day of Week Multiplier Edit	_	
			Rising/Falling Condition		
			🔽 Seasonal Variation 🛛 🛛 Edit		
4 · · · ·		*			Aduda
			OK Apply Cancel		Jamaa
					HYDRO

RELICENSING

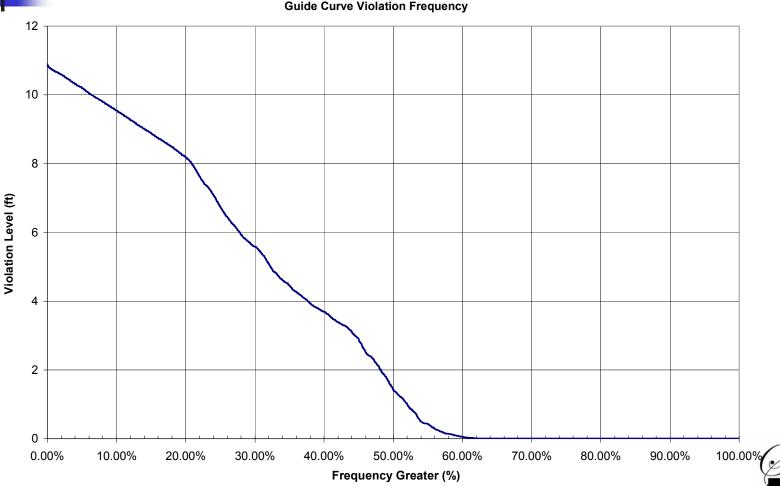
Extreme Example Output

Default Plot - Lake Murray, 11:00PM

Saluda HYDRO RELICENSING

Extreme Example Tables

e <u>E</u> dit <u>V</u> iew							
		LAKE MURRA	LAKE MURRA.				
Ordinate	Date / Time	ELEV-ZONE	ELEV-ZONE	ELEV-ZONE	ELEV	FLOW-IN	FLOW-OUT
		WHITEWATER0	WHITEWATER0	WHITEWATER0	WHITEWATER0	WHITEWATER0	WHITEWATER
239	27 May 91 22:	360.00	357.36	346.00	357.36	2,723	2,86
240	28 May 91 22:	360.00	357.35	346.00	357.35	3,392	3,52
241	29 May 91 22:	360.00	357.35	346.00	357.35	3,497	3,63
242	30 May 91 22:	360.00	357.34	346.00	357.34	4,006	4,14
243	31 May 91 22:	360.00	357.34	346.00	357.34	4,354	4,49
244	01 Jun 91 22:	360.00	357.33	346.00	357.33	4,829	4,96
245	02 Jun 91 22:	360.00	357.31	346.00	356.23	5,285	30,00
246	03 Jun 91 22:	360.00	357.28	346.00	356.43	4,894	40
247	04 Jun 91 22:	360.00	357.26	346.00	356.59	4,044	40
248	05 Jun 91 22:	360.00	357.23	346.00	355.32	1,645	30,00
249	06 Jun 91 22:	360.00	357.21	346.00	354.08	916	27,13
250	07 Jun 91 22:	360.00	357.18	346.00	352.96	1,106	23,95
251	08 Jun 91 22:	360.00	357.16	346.00	351.98	932	21,15
252	09 Jun 91 22:	360.00	357.13	346.00	351.09	721	19,00
253	10 Jun 91 22:	360.00	357.11	346.00	351.10	474	40
254	11 Jun 91 22:	360.00	357.08	346.00	351.13	1,073	40
255	12 Jun 91 22:	360.00	357.06	346.00	350.37	1,618	17,25
256	13 Jun 91 22:	360.00	357.03	346.00	349.69	2,317	15,62
257	14 Jun 91 22:	360.00	357.01	346.00	349.06	2,337	14,10
258	15 Jun 91 22:	360.00	356.98	346.00	348.49	1,985	12,72
259	16 Jun 91 22:	360.00	356.96	346.00	347.98	2,043	11,50
260	17 Jun 91 22:	360.00	356.94	346.00	348.11	2,827	40
261	18 Jun 91 22:	360.00	356.91	346.00	348.26	3,091	40
262	19 Jun 91 22:	360.00	356.89	346.00	347.83	3,261	11,22
263	20 Jun 91 22:	360.00	356.86	346.00	347.45	3,397	10,51
264	21 Jun 91 22:	360.00	356.84	346.00	347.13	4,024	9,92
265	22 Jun 91 22:	360.00	356.81	346.00	346.80	3,150	9,31
266	23 Jun 91 22:	360.00	356.79	346.00	346.44	1,879	8,63
267	24 Jun 91 22:	360.00	356.76	346.00	346.48	1,059	40
268	25 Jun 91 22:	360.00	356.74	346.00	346.51	940	40



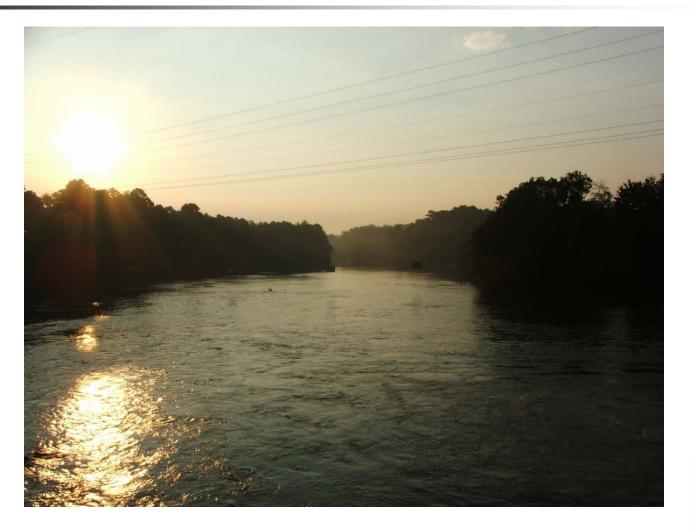
Interpretation of Example Results

- Interpretation of Results
 - Operation following this constraint visually drains the reservoir to a minimum of 346.0'
 - Dry years may not have sufficient inflow to return to Guide Curve
 - 50% of the days have greater than a 1.7' reduction from the Guide Curve

Example Guide Curve Violation Frequency & Magnitude

Constraint Compilation

- Assemble all stage & flow constraints into HEC-ResSim model
- Evaluate various constraints to determine reasonableness



Next Steps

- Develop resource constraints in terms of *FLOW* and *ELEVATION* for model input and analysis
- Run model simulations using constraint inputs
- Determine impact of constraints on:
 - Project Operations
 - Project Generation
 - Downstream flows
 - Flood Frequencies

Questions?

Saluda Hydro RELICENSING